DECOMPOSITIONS OF COMPLETE GRAPHS INTO THREE FACTORS

Tomáš Vetrík *

Decompositions of complete graphs into factors with given diameters are known to have the following hereditary property: if K_n is decomposable into m factors with diameters d_1, d_2, \ldots, d_m, then so is any $K_{n'}$ for $n' > n$. Let $F(d_1, d_2, \ldots, d_m)$ denote the smallest n for which K_n admits a decomposition into m factors with diameters d_1, d_2, \ldots, d_m. We summarize results on decomposition of complete graphs into three factors and present new result regarding the value of $F(3, d_2, d_3)$.

Keywords: complete graphs, factors, decompositions of graphs into factors

2000 Mathematics Subject Classification: 05C10, 05C38

1 INTRODUCTION

All graphs considered in this paper are finite, undirected, without loops and multiple edges. Let G be a graph with the vertex set $V(G)$ and the edge set $E(G)$. By a factor of the graph G we mean a subgraph of G containing all vertices of G. A set F_1, F_2, \ldots, F_m of factors of G forms a factorization (a decomposition into factors) of G if every edge of G belongs to exactly one of the factors. A factorisation of a graph is isomorphic, if the factors are mutually isomorphic. The diameter $d(G)$ of a connected graph G is the maximum distance between two vertices of G. For a disconnected graph G we define $d(G) = \infty$.

The study of decompositions of complete graphs into factors with given diameters was initiated by Bosák, Rosa and Znám [1]. They proved the following fundamental result: if the complete graph K_n is decomposable into m factors F_1, F_2, \ldots, F_m with prescribed diameters d_1, d_2, \ldots, d_m, then for every $n' > n$ the complete graph $K_{n'}$ is also decomposable into such factors.

We will briefly sum up the contents of this result by saying that decomposability of complete graphs into factors with given diameters is hereditary upwards. This property enables us to define the function $F(d_1, d_2, \ldots, d_m)$ to be the smallest positive integer n such that the graph K_n can be decomposed into m factors with prescribed diameters d_1, d_2, \ldots, d_m. If such an integer does not exist we set $F(d_1, d_2, \ldots, d_m) = \infty$. If all the factors have the same diameter d, we write $F(d_1, d_2, \ldots, d_m) = F_m(d)$.

2 DECOMPOSITION INTO 3 FACTORS

We begin with presenting known facts on decomposition of complete graphs into 3 factors and then we provide some new results. Let us assume that the diameters d_1, d_2, d_3 satisfy $d_1 \leq d_2 \leq d_3 < \infty$.

Bosák, Rosa and Znám [1] proved the following theorem.

Theorem A. Let $d_1 \geq 5$.
Then $F(d_1, d_2, d_3) \leq d_1 + d_2 + d_3 - 8$.

Later, Hrnčiar [2] proved that the equality in Theorem A holds for any d_1, sufficiently large.

Theorem B. Let $d_1 > 65$.
Then $F(d_1, d_2, d_3) = d_1 + d_2 + d_3 - 8$.

It makes sense to study small values of d_1 and this has been done by a number of authors. Bosák, Rosa and Znám in [1] gave a complete solution to the problem of decomposing a complete graph into three factors with diameters $2, d_2, d_3$ except for the exact value of $F(2, 2, 2)$, where they ended up with the inequality $12 \leq F(2, 2, 2) \leq 13$.

The exact value was found by Stacho and Urland with the help of a computer search. In [4] they proved that K_{12} is not decomposable into three factors with diameters equal to 2 and hence $F(2, 2, 2) = 13$.

Palumbíný [3] studied decomposition into 3 factors with the smallest diameter $d_1 = 3$. For small d_2 and arbitrary d_3 he found the values of the function $F(3, d_2, d_3)$ and for $d_2 \geq 9$ he proved that $F(3, d_2, d_3) \leq d_2 + d_3 - 6$.

We have made a contribution to the case $d_1 = 3$. Our result is that the complete graph of order $d_2 + d_3 - 7$ is not decomposable into 3 factors with diameters $3, d_2$ and d_3 where $d_2 \geq 9$ and therefore $F(3, d_2, d_3) = d_2 + d_3 - 6$.

This is the contents of Theorem 1; we precede its formulation by an auxiliary result that is interesting on its own and is used in the proof of Theorem 1.

* Department of Mathematics, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 813 68 Bratislava, Slovakia, E-mail: vetrik@math.sk

ISSN 1335-3632 © 2005 FEI STU
Theorem 1. Let u, v be two distinct vertices of a graph G with n vertices ($n \geq 5$) and a finite diameter d ($d \geq 2$). Let $\deg(u) = a$, $\deg(v) = b$ and $a + b > n - d + 3$.

I. If the edge $uv \in E(G)$ then there exists at least $(a+b)-(n-d+3)$ vertices adjacent to both vertices u and v in G.

II. If the edge $uv \notin E(G)$ then there exists at least $(a+b)-(n-d+2)$ vertices adjacent to both vertices u and v in G.

Proof. Let $a + b = n - d + 4 + k$ where $k \in N$, $k \geq 0$. The set of all vertices adjacent to vertex u (v) will be denoted by A (B).

I. Let $uv \in E(G)$. We first prove that $|A \cup B| \leq n - d + 3$. Let A_1 be the fixed diameter path in G. We consider 3 cases:

a) Let $u, v \in A_1$. Both u and v can be adjacent to at most two vertices from A_1 and $n-d-1$ vertices not in A_1. Thus $|A \cup B| \leq (n-d-1) + 2 + 2 = n - d + 3$.

b) Let $u \in A_1$, $v \notin A_1$. Besides u, the vertex v is adjacent to at most two vertices $v_1, v_2 \in A_1$ (possibly $v_1 = v_2$). The vertex u is adjacent to at most two vertices $u_1, u_2 \in A_1$. If $v_1 \neq v_2$ (since $uv \in E(G)$), at least one of them must coincide with some vertex u_i, $i \in \{1, 2\}$. Therefore, there exist at most 4 vertices in A_1 and $n-d-1$ vertices not in A_1, contained in $A \cup B$. It follows that $|A \cup B| \leq n - d + 3$.

c) Let $u \notin A_1$, $v \notin A_1$. The vertex u (v) is adjacent to at most three vertices from A_1, we denote them by $u_i, 1 \leq i \leq 3$, ($v_j, 1 \leq j \leq 3$). Again, we prove that there exist at most four distinct vertices in A_1 contained in $A \cup B$. If $v_i \neq v_j$ (since $uv \in E(G)$), at least one of them must coincide with some vertex u_i, $i \in \{1, 2, 3\}$, then there exist vertices u_i, v_j, where $i, j \in \{1, 2, 3\}$ such that in A_1, $\rho(u_i, v_j) = 4$. But there exists a path u_iuv_j of length 3 in G and it is a contradiction with equality $\rho(u_i, v_j) = 4$.

From the facts that $a + b = |A| + |B| = n - d + 4 + k$ and $|A \cup B| \leq n - d + 3$ it follows that $|A \cap B| = |A| + |B| - |A \cup B| \geq (n-d+4+k) - (n-d+3) = (a+b)-(n-d+3)$. This finishes the first part of the proof.

II. Let $uv \notin E(G)$. Similarly, we can distinguish three cases and prove that $|A \cap B| \geq (a+b)-(n-d+2)$.

Theorem 1. Let $d_2 \geq 9$. Then $F(3, d_2, d_3) = d_2 + d_3 - 6$.

Proof. To prove the assertion we have to show that the graph $K_{d_2+d_3-7}$ is not decomposable into three factors with diameters 3, d_2 and d_3. We prove this by contradiction. Suppose that such a decomposition exists. Let $F_1 = u_1xu_2$ be the fixed diameter path of the factor F_1. Since the factor F_2 (F_3) has diameter d_2 (d_3), the degree of every vertex in F_2 is at most $d_2 + d_3 - 7 - d_2 + 1 = d_3 - 6$ (in F_3 at most $d_2 + d_3 - 7 - d_3 + 1 = d_2 - 6$). Hence every vertex of F_1 has the degree $\geq 4 = d_2 + d_3 - 8 - (d_2 - 6) = (d_3 - 6)$. Let us denote the degree of the vertex $u_i, i = 1, 2$; in F_1 by $\deg(u_1) = a$ and $\deg(u_2) = b$. Here $a \geq 4$, $b \geq 4$ and $a + b \leq d_2 + d_3 - 9$, whereas the number of vertices not in A_1 is $d_2 + d_3 - 11$. There are $d_2 + d_3 - 9 - (a+b)$ vertices adjacent neither to u_1 nor to u_2 in F_1. Without lost of generality we may suppose that $u_1u_2 \in F_2$. We denote the degree of $u_i, i = 1, 2$; in F_2 by $\deg(u_1) = c$ and $\deg(u_2) = d$. In F_2, the degree of every vertex is at most d_2 and in F_1, the degree of vertex u_3 (u_2) is a (b). Hence in F_2, $d_2 + d_3 - 8 - (d_2 - 6) = d_3 - 2 - a \leq c \leq d_3 - 6$ ($d_2 + d_3 - 8 - (d_2 - 6) = d_3 - 2 - b \leq d \leq d_3 - 6$).

It follows from part I. of Lemma 1 that if $c + d > d_2 + d_3 - 7 - d_2 + 3 = d_3 - 4$ then there exist at least $c + d - (d_3 - 4)$ vertices (alternatively no vertex at all) adjacent to both vertices u_1 and u_2 in F_2. If $c + d - (d_3 - 4) > d_2 + d_3 - 9 - (a+b)$, we have a contradiction.

Hence we suppose that $c + d - (d_3 - 4) \leq d_2 + d_3 - 9 - (a+b)$. Denote the quantity $d_2 + d_3 - 9 - (a+b) - (c + d - (d_3 - 4)) = d_2 + 2d_3 - 13 - a - b - c - d$ by k, clearly $k \geq 0$.

With the help of part II. of Lemma 1 it can be proved that the number of vertices adjacent to both vertices u_1 and u_2 in F_2 exceeds k, which gives a contradiction.

The problem of decomposition of complete graph into 3 factors with the smallest diameter $d_1 = 3$ is solved completely.

Acknowledgment

The author acknowledges many valuable suggestions of Professor Jozef Sirán during preparation of the paper.

REFERENCES

Received 16 June 2005

Tomáš Vetřík (RNDr) is a PhD student at the Faculty of Civil Engineering of the Slovak University of Technology. His supervisor (in applied mathematics) is Professor Jozef Sirán.