Wiener index of trees of given order and diameter at most 6

Simon Mukwembi
School of Mathematics, Statistics and Computer Science
University of KwaZulu-Natal, Durban, South Africa
Mukwembi@ukzn.ac.za

and

Tomáš Vetrík
Department of Mathematics and Applied Mathematics
University of Pretoria, Pretoria, South Africa
tomas.vetrik@gmail.com

Abstract
The long-standing open problem of finding an upper bound for the Wiener index of a graph in terms of its order and diameter is addressed. Sharp upper bounds are presented for the Wiener index, and the related degree distance and Gutman index, for trees of order \( n \) and diameter at most 6.

2010 Mathematics Subject Classification: primary 05C12; secondary 05C05, 05C07.

Keywords: Wiener index, degree distance, Gutman index, tree, diameter.

1. Introduction

Let \( G \) be a graph with vertex set \( V(G) \) and order \( n \). We denote the distance between two vertices \( u, v \) in \( G \) by \( d_G(u, v) \) (or simply \( d(u, v) \)), the diameter of \( G \) will be denoted by \( d(G) \) (or \( d \)), the eccentricity of a vertex \( v \) will be denoted by \( ec(v) \) and the degree of \( v \) will be denoted by \( deg(v) \). Let \( N_i^G(v) \) (or simply \( N_i(v) \)) be the set of vertices at distance \( i \) from \( v \) in \( G \). Let \( u, v \) be two adjacent (non-adjacent) vertices of a graph \( G \). Then \( G' = G - uv \ (G' = G + uv) \) is obtained by removing the edge \( uv \) from \( G \) (by adding the edge \( uv \) to \( G \)).

The Wiener index is the oldest topological index. It has been investigated in the mathematical, chemical and computer science literature since the 1940’s. The Wiener index \( W(G) \) of a connected graph \( G \) is defined as the sum of the distances between all unordered pairs of vertices. The minimum value of the Wiener index of a graph (of a tree) of given order is attained by the complete graph (by the star), and the maximum value is attained by the path.

The degree distance, a variant of the Wiener index, is defined as

\[
D'(G) = \sum_{\{u,v\} \subseteq V(G)} (deg(u) + deg(v))d(u,v),
\]

and the Gutman index is defined as

\[
Gut(G) = \sum_{\{u,v\} \subseteq V(G)} deg(u)deg(v)d(u,v).
\]

---

1Financial support by the National Research Foundation and the University of KwaZulu-Natal is gratefully acknowledged.
The smallest value of the degree distance and Gutman index of graphs of order $n$ is attained by stars (see [1] and [12]). Turning to upper bounds on the degree distance, in 1999 Tomescu [12] conjectured the asymptotic upper bound $D'(G) \leq \frac{4}{5}n^4 + O(n^2)$. Nine years later, Bucicovschi and Cioabă [2] commented that Tomescu’s conjecture “seems difficult at present time.” In the following year Dankelmann et. al. [4] considered this problem and though they came close to proving the conjecture, their proof was inadequate to meet the $O(n^3)$ error term. Recently, Morgan, Mukwembi and Swart [9] salvaged enough from the proof given in [4] and solved Tomescu’s conjecture completely. In [9] one can find upper bounds on the degree distance of graphs of given order and diameter too. Upper bounds on the Gutman index of a graph of given order and diameter were studied in [4] and [10]. In [10] it was proved, that \( Gut(G) \leq \frac{1}{16}d(n-d)^4 + O(n^4) \) and consequently \( Gut(G) \leq \frac{1}{5}n^5 + O(n^4) \).

In this paper we study indices mentioned above for trees of given order and diameter. Since Klein et al. [7] showed that for every tree $T$ of order $n$,
\[
D'(T) = 4W(T) - n(n-1),
\]
and in [6] Gutman proved that
\[
Gut(T) = 4W(T) - (2n-1)(n-1),
\]
any result on $W(T)$ yields a similar result on $D'(T)$ and $Gut(T)$. It is not difficult to show that the extremal tree, which has the minimum Wiener index among trees of order $n$ and diameter $d$, is the path of length $d$ (containing $d+1$ vertices) with the central vertex joined to the other $n-d-1$ vertices; see [13].

The problem of finding an upper bound on the Wiener index of a tree (or graph) in terms of order and diameter is quite challenging; it was addressed by Plesnık [11] in 1975, and restated by DeLaViña and Waller [5], but still remains unresolved to this date. In this paper, we give a starting point to solving this long-standing problem. We present upper bounds on the Wiener index of trees of order $n$ and diameter at most 6, and we show that our bounds are best possible. As a corollary we obtain upper bounds on the degree distance and Gutman index of trees of given order and diameter at most 6. Let us mention that there are indices which were introduced much later than the Wiener index, however upper bounds on these indices for trees of given order and diameter are known. For example, a sharp upper bound on the eccentric connectivity index of trees of given order and diameter was given in [8]. To find a sharp upper bound on the Wiener index for trees of given order and large diameter seems to be a very complicated problem.

2. Preliminary results

First we give a few results which will be used in proofs of our main theorems. Note that $W(T) = \sum_{\{u,v\} \subseteq V(T)} d(u,v) = \frac{1}{2} \sum_{u \in V(T)} \sum_{v \in V(T)} d(u,v) = \frac{1}{2} \sum_{u \in V(T)} \sum_{i=1}^{d} i |N_i^T(u)|$.

**Lemma 2.1.** Let $T$ be a tree of diameter $2r$ ($r \geq 2$) with the central vertex $v$, and let $deg(u) = 2$ for every vertex $u \in N_i(v)$ where $i = 1, 2, \ldots, r - 2$. If $T$ has the maximum Wiener index among trees of given order and diameter $2r$, then the degrees of any two vertices in $N_{r-1}(v)$ differ by at most 1.

**Proof.** Let $u_1, u_2$ be any two vertices in $N_{r-1}^T(v)$, and let $n_i$ be the number of leaves adjacent to $u_i$ in $T$, $i = 1, 2$. We prove the result by contradiction. Suppose that $n_1 \geq n_2 + 2$. We show that $T$ does not have the maximum Wiener index among trees of given order and diameter $2r$. Let $w$ be any...
Leaf adjacent to $u_1$ in $T$, and let $T' = T - u_1w + u_2w$. We have $V(T') = V(T)$, $d(T') = d(T) = 2r$, $d_T(w_1, w_2) = d_{T'}(w_1, w_2)$ for any two vertices $u_1, w_2$ different from $w$, and $|N^T_2(w)| \neq |N'_{2r}(w)|$ only if $i = 2$ or $2r$. Since $|N^T_2(w)| = n_1, |N'^T_2(w)| = n_2 + 1$ and $|N^T_{2r}(w)| - |N'_{2r}(w)| = (n_1 - 1) - n_2$, we get

$$W(T') - W(T) = 2r(|N^T_{2r}(w)| - |N'^T_{2r}(w)|) + 2(|N^T_2(w)| - |N'^T_2(w)|) = 2(r - 1)(n_1 - n_2 - 1) > 0,$$

a contradiction. \( \Box \)

**Corollary 2.2.** Let $T_1$ be a join of a tree $T$ (which is defined in the previous lemma) and any tree $T_2$, where $T_1$ is constructed in such a way that we unify the central vertex of $T$ with any vertex of $T_2$. If $T_1$ has the maximum Wiener index among trees of given order and diameter 2, then the number of vertices in $N_r(u)$ which yields $W(T_1) = W(T_2)$, and let $|N(v)| = k$ and $|N_r(v)| = n_k$. If $T$ has the maximum Wiener index among trees of given order and diameter $2r$, then

$$\sum_{(y, x) \subseteq N_r(v)} d(y, x) \leq n_k(\frac{rn_k}{k} - 1),$$

and we have the equality only if the degrees of all vertices in $N_{r-1}(v)$ are equal.

**Proof.** Let $T$ be a tree with deg($u$) = 2 for every vertex $u \in N_i(v)$ where $i = 1, 2, \ldots, r - 2$ and let $|N(v)| = k$. Then $|N_i(v)| = k$ for any $i = 2, 3, \ldots, r - 1$. Let $N_{r-1}(v) = \{v_1, v_2, \ldots, v_k\}$. By Lemma 2.1, if $T$ has the maximum Wiener index, then $v_j (j = 1, 2, \ldots, k)$ has either $s - 1$ or $s$ neighbours in $N_r(v)$ for some $s \geq 1$. Without loss of generality, we can assume that the number of vertices in $N_r(v)$ which are adjacent to $v_i (i = 1, 2, \ldots, p, 1 \leq p \leq k)$ is $s - 1$, and the number of vertices in $N_r(v)$ which are adjacent to $v_j (j = p + 1, p + 2, \ldots, k)$ is $s$. We have $n_k = p(s - 1) + (k - p)s = ks - p$. Then any two vertices in $N_r(v)$ are of distance 2 if they have a common neighbour in $N_{r-1}(v)$, otherwise they are of distance 2r. Hence for $w, w' \in N_r(v)$,

$$\sum_{x \in N_r(v)} d(w, x) = 2(s - 2) + 2r(ks - p - s - 1) \text{ if } w \in N(v_i), i = 1, 2, \ldots, p,$$

$$\sum_{x \in N_r(v)} d(w', x) = 2(s - 1) + 2r(ks - p - s) \text{ if } w' \in N(v_j), j = p + 1, p + 2, \ldots, k,$$

which yields

$$\sum_{(y, x) \subseteq N_r(v)} d(y, x) = p(s - 1) \sum_{x \in N_r(v)} d(w, x) + (k - p)s \sum_{x \in N_r(v)} d(w', x) = (ks - p)[2r(ks - p) + 2(1 - r)s - 2] + 2p(s - 1)(r - 1).$$

Since $\frac{p}{k} \leq 1$, we have $s - 1 \leq s - \frac{p}{k}$, and consequently $2p(s - 1)(r - 1) \leq 2p(s - \frac{p}{k})(r - 1) = \frac{2p}{k}(ks - p)(r - 1)$. Hence

$$\sum_{(y, x) \subseteq N_r(v)} d(y, x) \leq \frac{ks - p}{2}[2r(ks - p) + 2(1 - r)s + \frac{2p}{k}(r - 1) - 2]$$
Since $\sum_{x} d(x,y) \leq n_{k}(rn_{k} + (1-r)\frac{n_{k}}{k} - 1),$

Clearly we have the equality above only if $\frac{p}{k} = 1$, which means that every vertex in $N_{r-1}(v)$ is adjacent to $s-1$ vertices in $N_{r}(v)$. $\square$

**Corollary 2.4.** Let $T_{1}$ be a join of a tree $T$ (defined as in Lemma 2.3) and a new tree $T_{2}$, where $T_{1}$ is constructed in such a way that we unify the central vertex of $T$ with any vertex of $T_{2}$. Then the distances between vertices in $T$ do not change, and if $T_{1}$ has the maximum Wiener index among trees of given order and diameter, then

$$\sum_{\{y,x\} \subseteq N_{r}(v)} d(y,x) \leq n_{k}(rn_{k} + (1-r)\frac{n_{k}}{k} - 1),$$

and we have the equality only if the degrees of all vertices in $N_{r-1}(v)$ are equal.

**Lemma 2.5.** Let $u_{1}, u_{2}, \ldots, u_{k}$ be any set of vertices of a tree $T$ which have a common neighbour, and let all the other neighbours of $u_{i}$ be leaves, $i = 1, 2, \ldots, k$. If $T$ has the maximum Wiener index among trees of order $n$ and diameter $d \geq 5$, then

(i) if $k \geq 2$ and $cc(u_{i}) < d$, then $|N(u_{i})| + |N(u_{j})| > \sqrt{2n} - 1$ for any $i, j \in \{1, 2, \ldots, k\}, i \neq j$,

(ii) $|N(u_{i})| < \sqrt{2n} + 1$ for any $i \in \{1, 2, \ldots, k\}$.

**Proof.** Let $u$ be a neighbour of all $u_{i}, i = 1, 2, \ldots, k$, and let $U_{i} = N(u_{i}) \setminus \{u\}$. We prove by contradiction that $|U_{i}| < \sqrt{2n}$ and if $k \geq 2$ and $cc(u_{i}) < d$, then $|U_{i}| + |U_{j}| > \sqrt{2n} - 3$ for any $i, j \in \{1, 2, \ldots, k\}, i \neq j$.

(i) Suppose that there are 2 vertices $u_{i}, u_{j}$ such that $|U_{i}| + |U_{j}| \leq \sqrt{2n} - 3$. Let

$$T' = T - \bigcup_{w \in U_{i} \cup U_{j}} u_{i}w - u_{j} + \bigcup_{w \in U_{i} \cup U_{j}} u_{i}w + u_{i}u_{j}.$$ 

Note that if we would not assume that $cc(u_{i}) < d(T)$, then $u_{i}$ can be the end vertex of a diametral path in $T$, which implies $d(T) < d(T')$. We also know that (since $d(T) \geq 5$) there is a vertex, say $y$, such that $d_{T}(v,y) = d_{T}(v,y) \geq 3$, hence $d(T')$ cannot be less than 5. It follows that $d(T) = d(T')$ and $d_{T}(w_{1}, w_{2}) = d_{T}(w_{1}, w_{2})$ for any two vertices $w_{1}, w_{2}$ except for the cases when $w_{1} \in U_{i} \cup \{u_{i}\}$ and $w_{2} \in U_{j}$, or when $w_{1} = u_{j}$. We have

$$d_{T}(w_{1}, w_{2}) = d_{T}(w_{1}, w_{2}) - 2 \text{ if } w_{1} \in U_{i} \cup \{u_{i}\}, w_{2} \in U_{j},$$

$$d_{T}(w_{j}, w) = d_{T}(w_{j}, w) - 1 \text{ if } w \in U_{i} \cup \{u_{i}\},$$

$$d_{T}(w_{j}, w) = d_{T}(w_{j}, w) + 1 \text{ if } w \in V(T) \setminus (U_{i} \cup \{u_{i}, u_{j}\}).$$

Hence

$$W(T') - W(T) = \sum_{w_{1} \in U_{i} \cup \{u_{i}\}} \sum_{w_{2} \in U_{j}} (d_{T}(w_{1}, w_{2}) - d_{T}(w_{1}, w_{2})) + \sum_{w \in V(T)} (d_{T}(w_{j}, w) - d_{T}(w_{j}, w))$$

$$= -2|U_{i}| - (|U_{i}| + 1) + (n - |U_{i}| - 2)$$

$$= n - 2|U_{i}| - 2|U_{j}| - 2|U_{j}|- 3.$$ (3)

Since $|U_{i}|, |U_{j}| \leq \frac{(|U_{i}| + |U_{j}|)^{2}}{2}$, we get

$$W(T') - W(T) \geq n - 2\left(\sqrt{2n} - 3\right) - 2(\sqrt{2n} - 3) - 3 = \sqrt{2n} - \frac{3}{2} > 0.$$
Hence $T$ is not a graph with the maximum Wiener index.

(ii) Suppose that $|U_i| \geq \sqrt{2n}$ for some $i \in \{1, 2, \ldots, k\}$. Let $x \in U_i$, and let $X$ and $Y$ be two disjoint subsets of $U_i$ such that $|X|$ and $|Y|$ differ by at most 1, and $U_i = X \cup Y \cup \{x\}$. Then $|X|, |Y| \geq \sqrt{2} - 1$. Let

$$T' = T - \cup_{w \in X} u_i w - u_i x + u x + \cup_{w \in X} x w.$$ 

Then $d_T(w_1, w_2) \neq d_{T'}(w_1, w_2)$ only in the following cases:

$$d_{T'}(w_1, w_2) = d_T(w_1, w_2) + 2 \text{ if } w_1 \in Y \cup \{u_i\}, w_2 \in X,$$

$$d_{T'}(x, w) = d_T(x, w) + 1 \text{ if } w \in Y \cup \{u_i\},$$

$$d_{T'}(x, w) = d_T(x, w) - 1 \text{ if } w \in V(T) \setminus (Y \cup \{u_i, x\}).$$

Hence

$$W(T) - W(T') = \sum_{w_1 \in Y \cup \{u_i\}} \sum_{w_2 \in X} (d_T(w_1, w_2) - d_{T'}(w_1, w_2)) + \sum_{w \in V(T)} (d_T(x, w) - d_{T'}(x, w))$$

$$= -2(|Y| + 1)|X| - (|Y| + 1) + (n - |Y| - 2)$$

$$= n - 2|X||Y| - 2|X| - 2|Y| - 3$$

$$= n - 2|X||Y| - 2|U_i| - 1$$

$$\leq n - 2\left(\sqrt{\frac{n}{2}} - 1\right)^2 - 2\sqrt{2n} - 1 = -3,$$

a contradiction. □

3. Main results

We present results on the Wiener index of trees of given order and diameter at most 6. The only tree of order $n$ and diameter 2 is the star $S_n$ having $n - 1$ leaves. Since any two leaves of the star are at distance 2, and the distance between the central vertex and any leaf is 1, the Wiener index of $S_n$ is $2\left(\frac{n-1}{2}\right) + (n - 1) = n^2/2 - 2n + 1$. Then from (1) and (2) it follows that the degree distance of the star $D'(S_n) = 3n^2 - 7n + 4$ and the Gutman index $Gut(S_n) = 2n^2 - 5n + 3$.

Now we bound the Wiener index of diameter $d$ where $3 \leq d \leq 6$.

**Theorem 3.1.** Let $T$ be a tree of order $n$ and diameter 3. Then the Wiener index of $T$,

$$W(T) \leq \frac{5n^2}{4} - 3n + 3$$

and this bound is best possible.

**Proof.** Let $T$ be any tree of order $n$ and diameter 3. We denote the central vertices of $T$ by $v$ and $u$. The set of leaves adjacent to $v$ (to $u$) will be denoted by $K$ (by $L$). Let $|K| = k$. Then $|L| = n - k - 2$. It can be checked that

$$\sum_{\{y, x\} \subseteq K} d(y, x) = 2\binom{k}{2}, \quad \sum_{\{y, x\} \subseteq L} d(y, x) = 2\binom{n-k-2}{2}, \quad \sum_{y \in K} \sum_{x \in L} d(y, x) = 3k(n-k-2),$$

$$\sum_{x \in V(T)} d(v, x) = (k+1) + 2(n-k-2), \quad \text{and} \quad \sum_{x \in V(T)} d(u, x) = (n-k-1) + 2k,$$
which yield
\[
W(T) = \sum_{\{y,x\} \subseteq K} d(y, x) + \sum_{\{y,x\} \subseteq L} d(y, x) + \sum_{y \in K} \sum_{x \in L} d(v, x) + \sum_{x \in V(T)} d(u, x)
\]
\[
= n^2 - 2n + kn - k^2 - 2k + 2 = f(k).
\]

Then from the derivative \(f'(k) = 0\) we obtain \(k = \frac{n}{2} - 1\), which yields the maximum of \(f(k)\). Hence
\[
W(T) \leq f\left(\frac{n}{2} - 1\right) = \frac{5n^2}{4} - 3n + 3
\]

This value is attained by the Wiener index of a tree which has both central vertices of degree \(\frac{n}{2}\), therefore our bound is best possible. \(\Box\)

**Theorem 3.2.** Let \(T\) be a tree of order \(n\) and diameter 4. Then
\[
W(T) \leq 2n^2 - 2n\sqrt{n - 1} - 3n + 2\sqrt{n - 1} + 1
\]
and the bound is best possible.

**Proof.** Let \(T\) be a tree with the maximal Wiener index among all trees of order \(n\) and diameter 4. We denote the central vertex of \(T\) by \(v\). Let \(|N(v)| = k\) and \(|N_2(v)| = n_k\). Clearly \(|V(T)| = n = 1 + k + n_k\). By Lemma 2.3 we have
\[
\sum_{\{y,x\} \subseteq N_2(v)} d(y, x) \leq n_k(2n_k - \frac{n_k}{k} - 1).
\]

It is easy to check that
\[
\sum_{\{y,x\} \subseteq N(v)} d(y, x) = 2k, \quad \sum_{y \in N_2(v)} \sum_{x \in N(v)} d(y, x) = n_k[1 + 3(k - 1)] \quad \text{and} \quad \sum_{x \in V(T)} d(v, x) = k + 2n_k.
\]

Consequently
\[
W(T) = \sum_{\{y,x\} \subseteq N_2(v)} d(y, x) + \sum_{\{y,x\} \subseteq N(v)} d(y, x) + \sum_{y \in N_2(v)} \sum_{x \in N(v)} d(y, x) + \sum_{x \in V(T)} d(v, x)
\]
\[
\leq 2n_k^2 - \frac{n_k^2}{k} + (3k - 1)n_k + k^2
\]
\[
= 2n^2 - \frac{(n - 1)^2}{k} - kn - 3n + k + 1 = f(k).
\]

Then the derivative \(f'(k) = 0\) yields the value \(k = \sqrt{n - 1}\), which gives us the maximum of \(f(k)\). It follows that
\[
W(T) \leq 2n^2 - 2n\sqrt{n - 1} - 3n + 2\sqrt{n - 1} + 1.
\]

Note that our bound is best possible. If every vertex in \(N[v]\) is of degree \(\sqrt{n - 1}\), where \(n - 1\) is a square, then by Lemma 2.3 we have equality in (4), and consequently equality in (5) too. \(\Box\)

**Theorem 3.3.** Let \(T\) be a tree of order \(n\) and diameter 5. Then the Wiener index
\[
W(T) \leq \frac{9n^2}{4} - 2n^2 + O(n)
\]
and the bound is best possible.

**Proof.** Let \( T \) be a tree with the maximal Wiener index among all trees of order \( n \) and diameter 5. We denote the central vertices of \( T \) by \( v \) and \( u \). Let \( K_1 = N(v) \setminus \{ u \}, L_1 = N(u) \setminus \{ v \}, \) and let \( K_2 \) (or \( L_2 \)) contains every leaf which has a neighbour in \( K_1 \) (in \( L_1 \)). Clearly \( V(T) = \{ v, u \} \cup K_1 \cup L_1 \cup K_2 \cup L_2 \). Let \(|K_1| = k, |L_1| = l, |K_2| = n_k\) and \(|L_2| = n_l\).

**Claim 1:** \( W(T) \leq 2(n_k + n_l)^2 + n_k n_l - \frac{n_k^2}{k} - \frac{n_l^2}{l} + 3(k + l)(n_k + n_l) + ln_k + kn_l + k^2 + l^2 + 3kl + 2k + 2l + 1. \)

From Note 2.4 it follows that
\[
\sum_{x \in K_2} \sum_{y \in K_1 \cup L_1 \cup \{v, u\}} d(x, y) = n_k (1 + 2 + 3k + 4l) \\
\sum_{x \in L_2} \sum_{y \in K_1 \cup L_1 \cup \{v, u\}} d(x, y) = n_l (1 + 2 + 3l + 4k) \\
\sum_{x \in K_2} \sum_{y \in L_2} d(x, y) = 5n_k n_l, \quad \sum_{x \in K_1} \sum_{y \in L_1} d(x, y) = 3kl, \\
\sum_{x \in K_1 \cup L_1} \sum_{y \in K_1 \cup L_1 \{v, u\}} d(x, y) = 2 \binom{k}{2} = k(k - 1), \quad \sum_{x \in K_1 \cup L_1} d(x, y) = 2 \binom{l}{2} = l(l - 1), \\
\sum_{x \in K_1 \cup L_1} d(x, u) = k + 2l, \quad \sum_{x \in K_1 \cup L_1} d(x, v) = l + 2k \quad \text{and} \quad d(u, v) = 1.
\]

Hence \( W(T) \leq 2(n_k + n_l)^2 + n_k n_l - \frac{n_k^2}{k} - \frac{n_l^2}{l} + 3(k + l)(n_k + n_l) + ln_k + kn_l + k^2 + l^2 + 3kl + 2k + 2l + 1. \)

By Lemma 2.5 (i), if \( k \geq 2 \) (if \( l \geq 2 \)), then \(|N(x)| + |N(y)| > \sqrt{2n} - 1\) for any two vertices \( x, y \) in \( K_1 \) (in \( L_1 \)). Since by Corollary 2.2 \(|N(x)| \) and \(|N(y)|\) differ by at most 1, both \(|N(x)|\) and \(|N(y)|\) are greater than \( \sqrt{\frac{n}{2}} - 1 \). By Lemma 2.5 (ii), \(|N(x)|, |N(y)| < \sqrt{2n} + 1\), hence if \( k \geq 2 \) (if \( l \geq 2 \)), then we can assume that every vertex in \( K_1 \) (in \( L_1 \)) is adjacent to \( c_1 \sqrt{n} + O(1) \) vertices in \( K_2 \) where \( \frac{\sqrt{2}}{2} \leq c_1 \leq \sqrt{2} \) (to \( c_2 \sqrt{n} + O(1) \) vertices in \( L_2 \), \( \frac{\sqrt{2}}{2} \leq c_2 \leq \sqrt{2} \)). It follows that \( n_k = k(c_1 \sqrt{n} + O(1)) \) and \( n_l = l(c_2 \sqrt{n} + O(1)) \), and consequently \( k \leq c_1\sqrt{n} + O(1) \) and \( l \leq c_2\sqrt{n} + O(1) \) (since \( n_k \) and \( n_l \) cannot exceed \( n \)).

**Claim 2:** We have \( n_k = n_l = O(n^{\frac{1}{2}}) \).

Suppose to the contrary that \( n_k > n_l + O(n^{\frac{1}{2}}) \). Let \( w \) be any vertex in \( K_2 \), let \( v_1 \) be the neighbour of \( w \) in \( T \) (\( v_1 \in K_1 \)), and let \( u_1 \) be any vertex in \( L_1 \). Let \( T' = T - v_1 w + u_1 w \). We have \( d(T) = d(T') = 5 \),
\[
\sum_{w' \in V(T')} d(w, w') = 1 + 2(c_1\sqrt{n} + O(1)) + 3k + 4(n_k - c_1\sqrt{n} - O(1)) + 4l + 5n_l \\
= 4n_k + 5n_l + O(n^{\frac{1}{2}}) \quad \text{and} \\
\sum_{w' \in V(T')} d(w, w') = 4n_l + 5n_k + O(n^{\frac{1}{2}}).
\]
Then we obtain
\[ 0 \leq W(T) - W(T') = \sum_{w' \in V(T)} d(w, w') - \sum_{w' \in V(T')} d(w, w') = n_l - n_k + O(n^{\frac{1}{2}}), \]
a contradiction.

Analogously it can be shown that \( n_l \) can not be greater than \( n_k + O(n^{\frac{1}{2}}) \).

Since \( n = n_k + n_l + k + l + 2 = n_k + n_l + O(n^{\frac{1}{2}}) \), we have \( n_k = n_l = \frac{n}{2} + O(n^{\frac{1}{2}}) \). We can write
\[ n_k = \frac{n}{2} + c_1^k \sqrt{n} + O(1) \text{ and } n_l = \frac{n}{2} + c_2^l \sqrt{n} + O(1), \]
where \( c_1^k \) and \( c_2^l \) are real numbers.

We also know that \( n_k = k(c_1^k \sqrt{n} + O(1)) \) which implies that \( k = \frac{2\sqrt{n}}{c_1^k} + O(1) \). Similarly we obtain \( l = \frac{2\sqrt{n}}{c_2^l} + O(1) \).

By Claim 1 we have
\[ W(T) \leq 2(n_k + n_l)^2 + n_k n_l - \frac{n_k}{k} - \frac{n_l^2}{l} + 3(k + l)(n_k + n_l) + \ln k + \ln n + O(n), \]
and from the previous part of the proof it follows that
\[ (n_k + n_l)^2 = (n - k - l - 2)^2 = n^2 - 2kn - 2ln + O(n), \]
\[ \frac{n_k}{k} = \left( \frac{n}{2} + c_1^k \sqrt{n} + O(1) \right)^2 / k = \frac{n^2}{4k} + O(n), \]
\[ \frac{n_l}{l} = \frac{n^2}{4l} + O(n), \]
\[ (k + l)(n_k + n_l) = (k + l)n + O(n), \]
\[ k n_l + ln_k = (k + l) \frac{n}{2} + O(n). \]

Since \( n = n_k + n_l + k + l + 2 = (\frac{n}{2} + c_1^k \sqrt{n}) + (\frac{n}{2} + c_2^l \sqrt{n}) + k + l + O(1) \), we obtain \( (c_1^k + c_2^l) \sqrt{n} = -k - l + O(1) \). Consequently
\[ n_k n_l = \frac{n^2}{4} + (c_1^k + c_2^l) \sqrt{n} \frac{n}{2} + O(n) = \frac{n^2}{4} - (k + l) \frac{n}{2} + O(n). \]

It follows that
\[ W(T) \leq \frac{9n^2}{4} - (k + l)n - \frac{n^2}{4} \left( k + \frac{1}{k} \right) + O(n) = f(k, l). \]

Then the partial derivatives \( f_k(k, l) = 0 \) and \( f_l(k, l) = 0 \) show that \( f(k, l) \) is maximized for \( k = l = \frac{\sqrt{n}}{2} \). Hence
\[ W(T) \leq \frac{9n^2}{4} - 2n^{\frac{3}{2}} + O(n). \]

It can be checked that if \( |K_1| = |L_1| = \frac{\sqrt{n} - 2}{2} \) and every vertex in \( K_1 \) and \( L_1 \) is adjacent to \( \sqrt{n} - 2 \) leaves, where \( n - 2 \) is a power of \( 4 \), then \( W(T) = \frac{9n^2}{4} - 2n^{\frac{3}{2}} + O(n) \). The proof is complete. \( \square \)

**Theorem 3.4.** Let \( T \) be a tree of order \( n \) and diameter \( 6 \). Then
\[ W(T) \leq 3n^2 - 2\sqrt{6n^{\frac{3}{2}}} - 2n + O(n^{\frac{1}{2}}) \]
and the bound is best possible.
**Proof.** Let $T$ be a tree with the maximal Wiener index among all trees of order $n$ and diameter 6. We denote the central vertex of $T$ by $v$.

Note that instead of Claims 1 and 2 one could prove a more general claim saying that all leaves of $T$ must be at distance 3 from $v$, however we do not need such a result to prove our theorem.

**Claim 1:** There is no leaf joined to $v$.

Suppose to the contrary that $x$ is a leaf joined to $v$. Since $v$ is the central vertex of a tree of diameter 6, there must be at least 2 other vertices $u_1$, $u_2$ adjacent to $v$ in $T$. Let $U_i$ be the set which contains all vertices $u$ that satisfy the inequality $d_T(u, u_i) < d_T(u, v)$, $i = 1, 2$. Then $U_1 \cap U_2 = \emptyset$. Since $|U_1| + |U_2| \leq n - 2$, at least one set $U_i$ contains at most $\frac{n}{2} - 1$ vertices. Without loss of generality we can suppose that $|U_1| \leq \frac{n}{2} - 1$. Let $T' = T - vx + u_1x$. Then $d(T') = d(T) = 6$ and

$$W(T') - W(T) = \sum_{u \in V(T)} (d_T(x, u) - d_T(x, u)).$$

Since $d_T(x, u) = d_T(x, u) - 1$ for any $u \in U_1$, and $d_T(x, u') = d_T(x, u') + 1$ for any $u' \in V(T) \setminus (U_1 \cup \{x\})$, we get $W(T') > W(T)$.

**Claim 2:** The vertex $v$ does not have a neighbour of degree 2 which is adjacent to a leaf.

Suppose that $v$ has a neighbour $x_1$ of degree 2 which is adjacent to a leaf, say $x_2$. Similarly as in the previous claim one can show that there must be a neighbour of $v$, say $u_1$, such that $d_T(u_1, u) < d_T(v, u)$ for at most $\frac{n-2}{2}$ vertices $u$ of $T$. Then for $T' = T - vx_1 + u_1x_1$ we get $d_T(x_1, u) = d_T(x_1, u) - 1$ for at most $\frac{n-2}{2}$ vertices $u$, and $d_T(x_1, u') = d_T(x_1, u') + 1$ for at least $\frac{n-2}{2}$ vertices $u'$ ($i = 1, 2$). Consequently

$$W(T') - W(T) = 2 \sum_{u \in V(T)} (d_T(x_1, u) - d_T(x_1, u)) \geq 2.$$

**Claim 3:** Each neighbour of $v$ has degree at most 3.

Suppose to the contrary that $v_1$ is a neighbour of $v$, which is adjacent to at least 3 other vertices $v_2, v'_2$ and $v'_3$. Let $V_3(V_3, V''_3)$ be the set of leaves adjacent to $v_2 (v'_2, v''_2)$. Without loss of generality we can assume that $|V_3| \geq |V''_3| \geq |V'_3| \geq 0$. Let

$$T' = T - \cup_{w \in V'_3} wv'_3 - v_1v'_3 + \cup_{w \in V''_3} wv + v_2v'_3.$$

Analogous steps as the ones in the proof of Lemma 2.5 (i) yield

$$W(T') - W(T) = n - 2|V_3||V'_3| - 2|V'_3| - 2|V''_3| - 3,$$

(see (3)). Note that if $|V_3| = |V''_3| = 0$, then $W(T') - W(T) > 0$, therefore we can assume that there is a vertex, say $v_3 \in V_3$.

Let $T'' = T - v_1v_2 + v_3$. Then $d_T(w_1, w_2) \neq d_T'(w_1, w_2)$ in the following cases:

$$d_T'(w_1, w_2) = d_T(w_1, w_2) + 2 \text{ if } w_1 \in V_3 \cup \{v_2\} \setminus \{v_3\}, w_2 \in V''_3 \cup V''_3 \cup \{v_1, v_2, v'_2\}$$

$$d_T'(v_3, w) = d_T(v_3, w) - 2 \text{ if } w \in V(T) \setminus (V_3 \cup V'_3 \cup V''_3 \cup \{v_1, v_2, v_2, v'_2\}).$$

Consequently

$$W(T) - W(T'') = -2|V_3||V'_3| + 3|V''_3| + 2(n - |V_3| - |V'_3| - |V''_3| - 4)$$

$$= 2(n - |V_3||V'_3| - |V'_3||V''_3| - 4|V_3| - |V''_3| - 4).$$
Since $T$ has the maximum Wiener index among all graphs of order $n$ and diameter $d$, we have $W(T') - W(T) \leq \frac{W(T) - W(T')}{2}$ which yield
\[ 0 \leq |V_3||V_3'|-|V_2||V_2'''| - 2|V_2| + |V_3'|-|V_2'''| - 1 \]
\[ = (|V_3|+1)(|V_3'|-|V_2'''|) - 2|V_2| - 1. \]
Since $|V_3'| \leq |V_2''|$ and $|V_2| \geq 1$, we get a contradiction.

Let $K_1 (L_1)$ be the set of neighbours of $v$ which are of degree 2 (of degree 3), and let $K_i (L_i)$ be the set of vertices at distance $i$ from $v$, such that every vertex in $K_i$ (in $L_i$) has a neighbour in $K_{i-1}$ (in $L_{i-1}$), $i = 2, 3$. Let $|K_1| = k, |L_1| = l, |K_3| = n_k$ and $|L_3| = n_l$. Clearly $n = 1 + 2k + 3l + n_k + n_l$.

**Claim 4:** For any 2 vertices $v_2$ and $v_2'$ in $K_2$, where $V_3 (V_2')$ is the set of neighbours of $v_2$ (of $v_2'$) in $K_3$, we have $|V_3| + |V_2| > \sqrt{3n} - 5$.

Let $v_1$ ($v_2'$) be the vertex in $K_1$ adjacent to $v_2$ (to $v_2'$), and let $V_3 (V_2')$ be the set of leaves adjacent to $v_2$ (to $v_2'$). Let
\[ T' = T - \cup_{w \in V_2'} w_2 w_2' - v_2' v_2' + \cup_{w \in V_2'} v_2 w + v_2 v_1 + v_2 v_2'. \]
We mention all cases when $d_T(w_1, w_2) \neq d_T'(w_1, w_2)$. We have
\[ d_T(w_1, w_2) = d_T(v_1, v_2) - 4 \text{ if } w_1 \in V_3 \cup \{v_2\}, w_2 \in V_2', \]
\[ d_T(v_2', w) = d_T(v_2', v_2) - 3 \text{ if } w \in V_3 \cup \{v_2\}, \]
\[ d_T(v_2', w) = d_T(v_1, v_2) - 2 \text{ if } w \in V_3 \cup \{v_2\}, \]
\[ d_T(v_1, w) = d_T(v_1, v_2) - 2 \text{ if } w \in V_3', \]
\[ d_T(v_2', v_2) = d_T(v_1, v_2') - 1, \]
\[ d_T(v_2', w) = d_T(v_2', v_2) + 1 \text{ if } w \in V(G) \setminus (V_3 \cup \{v_2, v_2'\}), \]
\[ d_T(v_1, w) = d_T(v_1, v_2') + 2 \text{ if } w \in V(G) \setminus (V_3 \cup V_2' \cup \{v_1, v_2', v_2\}). \]

Then
\[ W(T') - W(T) = 2(n - |V_3| - |V_2'| - 4) + (n - |V_3| - 3) \]
\[ - 1 - 2(|V_3| + |V_2'| + 1) - 3(|V_3| + 1) - 4(|V_3| + 1)|V_2'| \]
\[ = 3n - 4|V_3||V_2'| - 8|V_3| - 8|V_2'| - 17 \]
\[ = 3n - 4(|V_3| + |V_2'|)^2 - 8(|V_3| + |V_2'|) - 17. \]

If $|V_3| + |V_2'| \leq \sqrt{3n} - 5$, then we get $W(T') - W(T) \geq 2(\sqrt{3n} - 1) > 0$. It can be checked that $d(T') \leq d(T)$. If $d(T') < d(T)$, it is easy to transform $T'$ to $T''$ such that $V(T'') = V(T)$, $d(T'') = d(T)$ and $W(T'') > W(T') > W(T)$. So $W(T)$ is not the maximum Wiener index of trees of order $n$ and diameter 6.

**Claim 5:** We have $l < \sqrt{\frac{2}{3}}$ and $k < \sqrt{\frac{3n}{2}}$.

By Claim 4, for the sets of neighbours $V_2$ and $V_2'$ of any two vertices $v_2$ and $v_2'$ in $K_2$ we have $|V_2| + |V_2'| > \sqrt{3n} - 5$. If $k$ is even, then $n_k > \frac{k}{2}((\sqrt{3n} - 5) - \frac{3}{2})$. From Corollary 2.2 we know that $|V_3|$ and $|V_2'|$ differ by at most 1, therefore the number of leaves joined to any vertex in $K_2$ is greater than $\frac{3n}{2} - 3$. Hence if $k$ is odd, we have $n_k \geq \frac{k-1}{2}((\sqrt{3n} - 5) - \frac{\sqrt{3n}}{2}) - 3 = \frac{k}{2}(\sqrt{3n} - 5) - \frac{3}{2}$. Then $n > 1 + 2k + \frac{3}{2}(\sqrt{3n} - 5) - \frac{3}{2}$ which implies that $k < \frac{2n - 1}{\sqrt{3n} - 1} < \frac{(2 + \epsilon)n}{\sqrt{3n}}$ for some small $\epsilon > 0$. For us it suffices to use $\epsilon = 1$. 

10
By Lemma 2.5 (i), if \(v_2\) and \(v'_2\) are any two vertices in \(L_2\) which have a common neighbour, where \(V_4(V'_4)\) is the set of neighbours of \(v_2, v'_2\) in \(L_3\), then \(|V_4| + |V'_4| > \sqrt{2m} - 3\). We get \(n_l > (\sqrt{2m} - 3)l\) which yields \(n > 1 + 3l + (\sqrt{2m} - 3)l\), and consequently \(l < \sqrt{\frac{2}{3}}\).

**Claim 6:** Let \(v_1, u_1 \in L_1\) and let \(V_3(U_3)\) be a subset of \(L_3\) containing vertices which are at distance 2 from \(v_1 (u_1)\). Then \(|V_3|\) and \(|U_3|\) differ by at most 1.

Suppose that \(|V_3| \geq |U_3| + 2\). Let \(v'_2, v''_2, u'_2, u''_2\) be two vertices in \(L_2\) adjacent to \(v_1 (u_1)\), and let \(V_3, U_3, U_3''\) be the set of neighbours of \(v'_2, u'_2, v''_2, u''_2\) in \(L_3\). Since \(|V_3| + |U_3''| \geq |U_3| + |U_3''| + 2\), without loss of generality we can assume that \(|V_3| \geq |U_3| + 1\). Let \(w\) be any vertex in \(V_3\) and let \(T' = T - v'_2w + u'_2w\). Since \(|N^3_T(v_1) \cap L_3| \geq 2\), we have \(|N^3_T(v_1) \cap L_3| \geq 1\), which implies that there must be two vertices at distance 6 in \(T'\). Hence \(d(T) = d(T')\). It can be checked that \(d_T(w_1, w_2) = d_T'(w_1, w_2)\) for any two vertices \(w_1, w_2\) different from \(w\), and \(|N^T(w)| = |N'^T(w)|\) if \(i = 1, 3, 5\). We have

\[
\begin{align*}
|N^3_T(w)| - |N^T(w)| &= (|U_3| + 1) - |V'_3|, \\
|N'^3_T(w)| - |N'^T(w)| &= (|U'_3| + 1) - (|V'_3| + 1), \\
|N^6_T(w)| - |N^6_T(w)| &= (|V_3| - 1) - |U_3|.
\end{align*}
\]

Then

\[
W(T') - W(T) = \sum_{i=1}^{6} i(|N^i_T(w)| - |N^i_T(w)|)
\]

\[
= 6(|V_3| - |U_3|) - 6(|V'_3| - |U'_3|) = 2(|V_3| - |U_3|) - 2(|V'_3| - |U'_3|) - 4
\]

\[
= 2(|V_3| - |U_3|) + 2(|V'_3| - |U'_3|) - 2|U'_3| > 0. \text{ a contradiction.}
\]

**Claim 7:**

\[
\sum_{\{x, y\} \subseteq L_3} d(x, y) \leq n_l(3n_l - \frac{3n_l}{2l} - 1).
\]

Let \(L_1 = \{v_1, v_2, \ldots, v_l\}\) and let \(v, u, w\) be the neighbours of \(v_i, i = 1, 2, \ldots, l\). By Claim 6, the number of vertices in \(L_3\) which are at distance 2 from \(v_i\) is either \(2s\) or \(2s + \epsilon\), where \(s\) is an integer, and \(\epsilon = 1\) or \(-1\). Without loss of generality we can assume that the number of vertices in \(L_3\) which are at distance 2 from \(v_3, v_j (j = 1, 2, \ldots, p)\) is \(2s + \epsilon\), and the number of vertices in \(L_3\) which are at distance 2 from \(v_3, v_j (j = p + 1, p + 2, \ldots, l)\) is \(2s\). Then by Corollary 2.2 we can assume that \(u_i, i = 1, 2, \ldots, l\) and \(w_j, j = 1, 2, \ldots, p\) are adjacent to \(s\) vertices in \(L_3\), and \(w_j (j = 1, 2, \ldots, p)\) are adjacent to \(s + \epsilon\) vertices in \(L_3\). It follows that \(|L_3| = n_l = (2l - p)s + p(s + \epsilon) = 2ls + ep\). Then for the vertices \(w, w', w''\) in \(L_3\) we have

\[
\sum_{v' \in L_3} d(w, v') = 2(s - 1) + 4s + 6(2ls + ep - 2s) \quad \text{if} \ w \in N(u_j) \cup N(w_j), j = p + 1, p + 2, \ldots, l,
\]

\[
\sum_{v' \in L_3} d(w', v') = 2(s - 1) + 4(s + \epsilon) + 6(2ls + ep - 2s - \epsilon) \quad \text{if} \ w' \in N(v_i), i = 1, 2, \ldots, p,
\]

\[
\sum_{v' \in L_3} d(w'', v') = 2(s + \epsilon - 1) + 4s + 6(2ls + ep - 2s - \epsilon) \quad \text{if} \ w'' \in N(w_i), i = 1, 2, \ldots, p,
\]

which yield

\[
2 \sum_{\{v'', v'\} \subseteq L_3} d(v'', v') = \sum_{v'' \in L_3} \sum_{v' \in L_3} d(v'', v')
\]

11
Finally, by Claim 7, 
\[
\sum_{w' \in L_3} d(w, v') + ps \sum_{w' \in L_3} d(w', v') + p(s + \epsilon) \sum_{w' \in L_3} d(w'', v')
\]
\[
= (2ls + cp)[6(2ls + cp) - 6s - 2] - p(6cs + 4).
\]
Since \( \frac{p}{l} \leq 1 \), we have \(-p(6cs + 4) \leq -p(6s + \frac{3p}{l}) = -\frac{3p}{l}(2ls + cp)\). Consequently
\[
\sum_{\{w, u\} \subseteq L_3} d(w, u) \leq \frac{2ls + cp}{2}[6(2ls + cp) - 6s - \frac{3cp}{l} - 2] = \frac{n_l}{2} (6n_l - 3n_t - \frac{l}{l} - 2).
\]

**Claim 8:** \( W(T) \leq 3(n_k + n_l)^2 + (9k + 14l)(n_k + n_l) - \frac{2n_k^2}{k} - \frac{3n_l^2}{2l} - 4n_k - 6n_l + 6k^2 + 15l^2 + 19kl - 2k - 6l. \)

It can be checked that
\[
\sum_{u \in K_3} \sum_{w \in L_3} d(u, w) = 6n_k n_l,
\]
\[
\sum_{w \in K_3} \sum_{w \in V(G) \setminus (K_3 \cup L_3)} d(u, w) = n_k[1 + 2 + 3 + 4(k - 1) + 4l + 5(k - 1) + 5 \cdot 2l]
= n_k(9k + 14l - 3),
\]
\[
\sum_{w \in L_3} \sum_{w \in V(G) \setminus (K_3 \cup L_3)} d(u, w) = n_l[1 + 2 + 3 \cdot 2 + 4k + 4(l - 1) + 5k + 5 \cdot 2(l - 1)]
= n_l(9k + 14l - 5),
\]
\[
\sum_{\{u, w\} \subseteq K_2} d(u, w) = 4 \binom{k}{2} = 2k(k - 1),
\]
\[
\sum_{\{u, w\} \subseteq L_2} d(u, w) = l(8l - 6) \quad \text{since for any } u \in L_2, \sum_{w \in L_2} d(u, w) = 2 + 4 \cdot 2(l - 1),
\]
\[
\sum_{u \in K_2} \sum_{w \in K_1 \cup L_1 \cup L_2 \setminus \{v\}} d(u, w) = k[1 + 2 + 3(k - 1) + 3l + 4 \cdot 2l] = k(3k + 11l),
\]
\[
\sum_{u \in L_2} \sum_{w \in K_1 \cup L_1 \cup L_2 \setminus \{v\}} d(u, w) = 2l[1 + 2 + 3k + 3(l - 1)] = 6l(l + k).
\]

Finally
\[
\sum_{\{u, w\} \subseteq K_1} d(u, w) = 2 \binom{k}{2} = k(k - 1), \quad \sum_{\{u, w\} \subseteq L_1} d(u, w) = 2 \binom{l}{2} = l(l - 1),
\]
\[
\sum_{w \in K_1 \cup L_1} d(u, w) = 2k l, \quad \sum_{w \in K_1 \cup L_1} d(u, w) = k + l.
\]

By Claim 7, \( \sum_{(x, y) \subseteq L_3} d(x, y) \leq n_l(3n_l - \frac{3n_l}{2l} - 1) \) and from Corollary 2.4 it follows that \( \sum_{(x, y) \subseteq K_3} d(x, y) \leq n_k(3n_k - \frac{2n_k}{k} - 1) \), hence we get
\[
W(T) \leq 3(n_k + n_l)^2 + (9k + 14l)(n_k + n_l) - \frac{2n_k^2}{k} - \frac{3n_l^2}{2l} - 4n_k - 6n_l + 6k^2 + 15l^2 + 19kl - 2k - 6l.
\]

Now we complete the proof of Theorem 3.4. Let \( f(n_k, n_l) = 3(n_k + n_l)^2 + (9k + 14l)(n_k + n_l) - \frac{2n_k^2}{k} - \frac{3n_l^2}{2l} - 4n_k - 6n_l + 6k^2 + 15l^2 + 19kl - 2k - 6l. \) We find the maximum of \( f(n_k, n_l) \) subject
to the constraint \( n_k + n_l = n - 2k - 3l - 1 = a \). Let \( F(n_k, n_l, \lambda) = f(n_k, n_l) - \lambda(n_k + n_l - a) \). Then using \( F(n_k, n_l, \lambda) = F(n_k, n_l, \lambda) \) we get \( \frac{4n_k}{k} = \frac{3n_l}{l} - 2 \). Substitution \( n_l = a - n_k \) yields
\[
n_k = \frac{k(3a - 2l)}{3k + 4l},
\]
and then we obtain \( n_l = \frac{2l(2a + k)}{3k + 4l} \). It is easy to check that these values of \( n_k \) and \( n_l \) give the maximum of \( F(n_k, n_l, \lambda) \). Hence \( W(T) \) is at most
\[
3a^2 + (9k + 14l)a - \frac{2k(3a - 2l)^2}{(3k + 4l)^2} - \frac{6(2a + k)^2}{(3k + 4l)^2} - \frac{4k(3a - 2l)}{3k + 4l} - \frac{12l(2a + k)}{3k + 4l} + 6k^2 + 15l^2 + 19kl - 2k - 6l.
\]
Consequently
\[
\frac{2k(3a - 2l)^2}{(3k + 4l)^2} + \frac{6(2a + k)^2}{(3k + 4l)^2} = \frac{6a^2 + 2kl}{3k + 4l} \text{ and } \frac{4k(3a - 2l)}{3k + 4l} + \frac{12l(2a + k)}{3k + 4l} = \frac{12a(k + 2l)}{3k + 4l},
\]
and using \( a = n - 2k - 3l - 1 \) we get
\[
W(T) \leq 3n^2 - (3k + 4l)n - 6n + k - 2l + 3 - \frac{6(n^2 - 2kn - 2l n - 2n - 3l^2 - kl + 2k + 2l + 1)}{3k + 4l}.
\]
Since by Claim 5, \( k \) and \( l \) are at most \( O(n^{1/2}) \), we obtain
\[
W(T) \leq 3n^2 - (3k + 4l)n - 6n - \frac{6n(n - 2k - 2l - 2)}{3k + 4l} + O(n^{1/2})
= 3n^2 - (3k + 4l)n - 6n - \frac{6n(n - 2)}{3k + 4l} + 3n\left(1 + \frac{k}{3k + 4l}\right) + O(n^{1/2}).
\]
Let \( b = 3k + 4l \) such that the expression above is maximal. Then
\[
3n^2 - bn - 6n - \frac{6n(n - 2)}{b} + 3n\left(1 + \frac{k}{b}\right)
\]
is maximized for \( b = 3k \) (and \( l = 0 \)). Now we need to find \( b \) such that
\[
f(n, b) = 3n^2 - (b + 2)n - \frac{6n(n - 2)}{b}
\]
is maximal. The partial derivative \( f_b(n, b) = 0 \) yields the value \( b = \sqrt{6(n - 2)} \), which gives us the maximum of \( f(n, b) \), that is
\[
3n^2 - 2\sqrt{6(n - 2)}n - 2n \leq 3n^2 - 2(\sqrt{6n} - \frac{12}{\sqrt{6n}})n - 2n = 3n^2 - 2\sqrt{6n}^2 - 2n + O(n^{1/2}).
\]
Clearly \( W(T) \leq f(n, b) + O(n^{1/2}) \).

It remains to prove that the upper bound is best possible. We show that there is an infinite family of trees \( T_1 \) such that \( W(T_1) = 3n^2 - 2\sqrt{6n}^2 - 2n + O(n^{1/2}) \). Let \( n = \frac{3}{2}k^2 + 1 \) where \( k \) is even. Let \( T_1 \) be a tree of order \( n \), diameter 6, with the central vertex \( v \), where the degree of \( v \) is \( k \), any vertex in \( N(v) \) has one neighbour in \( N_2(v) \), and any vertex in \( N_2(v) \) is adjacent to \( n = \frac{3}{2}k - 2 = \frac{1}{2}\sqrt{6(n - 1)} - 2 \) vertices in \( N_3(v) \). Then \( |N(v)| = |N_2(v)| = k = \frac{1}{3}\sqrt{6(n - 1)} \) and \( |N_3(v)| = n_k = k(\frac{3}{2}k - 2) = n - \frac{2}{3}\sqrt{6(n - 1)} - 1 \).

We have
\[
\sum_{\{y, x\} \subseteq N_3(v)} d(y, x) = n_k(3n_k - \frac{2n_k}{k} - 1),
\]
13
which is the upper bound in Lemma 2.3 if the diameter is 6. Consequently we get the equality in Claim 8 (where in our case \( l = 0 \) and \( n_l = 0 \)). It follows that

\[
W(T_1) = 3n_k^2 + 9kn_k - \frac{2n_k^2}{k} - 4n_k + 6k^2 - 2k.
\]

Since \( n_k = k(\frac{3}{2}k - 2) \), we obtain

\[
W(T_1) = \frac{27}{4}k^4 - 9k^3 + 6k^2 - 2k.
\]

The proof is complete. \( \square \)

Since by (1) and (2), \( D'(T) = 4W(T) - n(n - 1) \) and \( Gut(T) = 4W(T) - (2n - 1)(n - 1) \), we obtain the following corollaries.

**Corollary 3.5.** Let \( T \) be a tree of order \( n \) and diameter \( d \). Then the degree distance \( D'(T) \) is at most

(i) \( 4n^2 - 11n + 12 \) if \( d = 3 \),
(ii) \( 7n^2 - 8n\sqrt{n - 1} - 11n + 8\sqrt{n - 1} + 4 \) if \( d = 4 \),
(iii) \( 8n^2 - 8n^2 + O(n) \) if \( d = 5 \),
(iv) \( 11n^2 - 8\sqrt{6n^2} - 7n + O(n^\frac{1}{2}) \) if \( d = 6 \).

**Corollary 3.6.** Let \( T \) be a tree of order \( n \) and diameter \( d \). Then the Gutman index \( Gut(T) \) is at most

(i) \( 3n^2 - 9n + 11 \) if \( d = 3 \),
(ii) \( 6n^2 - 8n\sqrt{n - 1} - 9n + 8\sqrt{n - 1} + 3 \) if \( d = 4 \),
(iii) \( 7n^2 - 8n^2 + O(n) \) if \( d = 5 \),
(iv) \( 10n^2 - 8\sqrt{6n^2} - 5n + O(n^\frac{1}{2}) \) if \( d = 6 \).

**References**


